Seasonal Precipitation Timing and Ice Core Records

C. D. Charles; D. Rind; J. Jouzel; R. D. Koster; R. G. Fairbanks

Stable URL:
http://links.jstor.org/sici?sici=0036-8075%2819950714%293A269%3A5221%3C247%3ASPTAIC%3E2.0.CO%3B2-6

Science is currently published by American Association for the Advancement of Science.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/aaas.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of scholarly journals. For more information regarding JSTOR, please contact jstor-info@umich.edu.
T12 cells prompted us to focus our attention on the IFN-γ receptor (IFN-γR). This receptor is composed of two chains, IFN-γRα and the recently cloned accessory factor–I (AF-1) (also referred to as IFN-γRβ) (18). Although IFN-γRα can, by itself, bind IFN-γ with high affinity (19), interaction of this chain with AF-1 is required for IFN-γ-mediated signaling, including the activation of STF-IFNγ and the induction of IRF-1 gene expression (20). We therefore examined the T12 and T12/2 clones for the expression of these receptor components. Fluorescence-activated cell sorting (FACS) analysis of cell surface expression of IFN-γRα (Fig. 4A) revealed that the clones contain roughly equal amounts of IFN-γRα chain. However, when we examined these clones for the presence of AF-1–encoding mRNA by Northern (RNA) analysis (Fig. 4B), we found that the T12, but not the T12/2, clone expresses T12/1 mRNA transcript. Reverse transcription of RNA from these different T12 clones followed by the polymerase chain reaction (RT-PCR) confirmed the absence of AF-1 expression in these cells (Fig. 4C). To test whether reintroduction of AF-1 expression could rescue IFN-γ signaling in T12 cells, we transiently transfected a complementary DNA (cDNA) encoding AF-1 into a T12/1 clone (DL1). Transfection of AF-1, but not a mock transfection, led to the appearance of STF-IFNγ in T12 cells (Fig. 5). Detection of this complex by EMSA was blocked by an antisense against Stat1 (Fig. 5).

Our data indicate that T12 cells cannot activate the Jak-STAT pathway in response to IFN-γ because the AF-1 component of the IFN-γ receptor is not expressed. Downregulation of the IFN-γ signaling pathway in T12 cells may allow the immune system to selectively inhibit the proliferation of T12 cells, while permitting T12 cells to escape the antiproliferative effects of the IFN-γ that they secrete. Preliminary data reveal that precursor T helper cells are able to activate STF-IFNγ. If these cells are cultured in the presence of IFN-γ, the resulting T cell population, which is greatly enriched in T12 cells, does not activate STF-IFNγ in response to IFN-γ restimulation (21). Thus, during differentiation into T12 cells, T cells may lose the capacity to activate STF-IFNγ. This finding is consistent with a model in which modulation of cytokine signaling may play an important role in the acquisition of specific T helper cell phenotypes.

REFERENCES AND NOTES

18. J. Soh et al., Cell 76, 703 (1994); S. Hemmi, R. Bohm, G. Stark, F. D. Marco, M. Aguet, ibid., p. 813.
21. A. Pernis et al., unpublished material.
22. P. Rothman et al., Immunity 1, 457 (1994).
24. Immunoprecipitates were washed twice in kinase buffer (20 mM HEPES, pH 7.4, 2 mM MnCl2, 10 mM MgCl2, 1 mM dithiothreitol, 150 mM NaCl, 0.1 mM sodium orthovanadate, and 0.4 mM phenylmethylsulfonyl fluoride), then resuspended in 40 µL of kinase buffer and subjected to an in vitro kinase reaction with [γ-32P]adenosine triphosphate (ATP) as previously described (O. Colao, H. Uyttenhove, P. Dornanski, H. Yan, J. Kowless, J. Biol. Chem. 269, 3518 (1994)).
27. The cdNA was obtained by reverse transcription with the antisense primer. 5′-AAT ACT TGT AGC ATC CAG AA-3′. Half of the cdNA was then subjected to PCR amplification with the above primer and the following sense primer. 5′-GAA CAA ATC GAA GAG GAT CT-3′. All PCR was performed with 25 cycles consisting of 1 min at 94°C, 1 min at 44°C, and 1.5 min at 72°C with a 7-min extension at 72°C for the last cycle. DNA amplification products were analyzed by acrylamide gel electrophoresis.
29. Transient transfections of D1.1 were carried out by electroporation as previously described (J. Lederer, J. Liu, M. Todd, L. Gilmcher, A. Lichtman, J. Immunol. 152, 77 (1994)) except that a Cell-Zap II instrumet (Andersen System) and 40-µF capacitance were used. Cells were assayed 48 hours after transfection. The constitutive STF-IFNγ DNA binding activity was decreased in extracts of D1.1 transfected D1.1 is likely to be due to the presence of endogenous IFN-γ secreted by these cells. Addition of a neutralizing IFN-γ antibody to the culture of the AF-1–transfected D1.1 decreased the amount of STF-IFNγ in untreated cells.
30. We thank C. Cepko for the Jak1 antisense; D. Levy for the p48 antisense; S. Pestka for the AF-1 cDNA; K. Calame, N. Brausine, and L. Chess for critically reading the manuscript; and S. Mauze for technical assistance. Supported by NIH (P.R. and C.S.), the James S. McDonnell Foundation (C.S.), Werner Lambert Grant, the Pew Scholars Program, the Stephen I. Morse Fellowship (A.P.), and the American Academy of Allergy and Immunology (A.P.). DNA Research Institute is supported by the Schering-Plough Corporation.

1 March 1995; accepted 13 April 1995

TECHNICAL COMMENTS

Seasonal Precipitation Timing and Ice Core Records

Commenting on our work with isotope tracers and the origin of moisture in general circulation model simulations (1), Eric J. Steig et al. (2) suggest that changes in the timing of precipitation may provide strong control on isotopic variability in Greenland ice cores. In principle, we agree with the thrust of their comment. In a broad sense, without consideration of specific processes, the seasonality effects described in our report are two classes of the same general phenomenon: evaporation, distillation, and transport of isotopes over different temperature regimes. Although the analysis of Steig et al. for Greenland precipitation over the last century suggests that seasonal effects are a significant component of interannual isotopic variability, general circulation models (GCMs) represent one of the few means of assessing realistic, seasonally resolved output for interpreting the isotopic record over glacial cycles. The GCM approach is important for understanding the relationship between 815O and temperature because (i) thermodynamic principles and analysis of modern isotopic data suggest that present-day spatial 815O-temperature correlations cannot be considered an exact surrogate for the temporal relationship between these variables and (ii) geographic isotopic variability—for example, the differences in isotopic values among ice
cores—can best be examined with a three-dimensional model.

Although we are limited by having only two complete multiyear isotope simulations (ice age and modern), some aspects of temporal isotopic variability over Greenland can be addressed. For example, extending the approach of Steig et al. (2) to the Goddard Institute for Space Studies (GISS) 4 × 5° resolution isotope tracer model experiments reveals that there is virtually no systematic change in the seasonal timing of Greenland precipitation between the ice age and modern simulations. As a result, the simulated glacial-interglacial change in “precipitation-weighted temperature” is not significantly better correlated with isotopic change over Greenland than is the change in simulated temperature alone. Thus, these model results do not support the suggestion of Steig et al. that seasonality is a primary influence on isotopic change between all climates.

Assessing the importance of moisture source variability, as opposed to local air temperature, is complicated because of the wide range of sources—and therefore climate processes—that contribute to Greenland precipitation in the model. It is not our intention to imply that changes in the origin of moisture source can by themselves account for all isotopic variability in Greenland ice cores. For example, in the 5 × 10° resolution model, local air temperature change is well correlated with the glacial-interglacial isotopic change over the Greenland and Laurentide regions (3). The same degree of correlation is also apparent in the 4 × 5° resolution model (R² values for this correlation range from 0.8 to 0.5, depending on exactly which points are considered). But the 4 × 5° model highlights the fact that different regions have different isotopic “sensitivities” to climate change (Fig. 1). For example, the slope of the glacial-interglacial Δδ18O/ΔT relationship over North-Central Greenland averages about 0.8 per mil per degrees Celsius, whereas the glacial-interglacial slope over southeastern Greenland is 0.4 per mil per degrees Celsius (the modern spatial relationship is about 0.6 per mil per degrees Celsius). Regression analysis shows that changes in the origin of moisture source can account for some of this difference in isotopic sensitivity, one example being the interplay between North American and North Pacific moisture over Greenland examined in our report (1). However, more precise physical explanations for these regional differences may come with additional climate simulations, and more confidence in their significance may come with comparison to other GCMs fitted with tracers diagnostics, such as the Laboratoire de Météorologie Dynamique (Paris) (4) and the Hamburg (5) models.

Although we recognized that moisture source variability, isotopic variability, and air temperature variability must all be related to some degree, our report focused on the broad-scale climate processes responsible for the ice core isotopic shifts. The existence of multiple moisture sources for Greenland in our three-dimensional general circulation model experiments suggests that other processes, aside from those just involving the North Atlantic ocean, need to be considered. Steig et al. propose one variable, sea ice extent, which could be an important influence in shaping the ice core record. Although our model results show no evidence as yet of their specific seasonality mechanism, the results do suggest more detailed investigation into the regional variability of the δ18O-temperature relationship, including the influence of sea ice.

C. D. Charles
Scripps Institution of Oceanography,
University of California at San Diego,
La Jolla, CA 92093, USA

D. Rind
Goddard Institute for Space Studies,
New York, NY 10028, USA

J. Jouzel
Laboratoire de Modélisation du Climat et de l’Environnement, Centre d’Études de Satory,
91191 Gif-sur-Yvette, France, and
Laboratoire de Géosciences et de Géophysique de l’Environnement, Centre National de la Recherche Scientifique,
38402 Saint Martin d’Hères Cedex, France

R. D. Koster
National Aeronautics and Space Administration/Goddard Space Flight Center,
Greenbelt, MD 20904, USA

R. G. Fairbanks
Lamont-Doherty Earth Observatory,
Palisades, NY 10964, USA, and
Department of Geological Sciences,
Columbia University,
New York, NY 10025, USA

REFERENCES

27 March 1995; accepted 12 April 1995